Metagenomics
From DrugPedia: A Wikipedia for Drug discovery
(→Metagenomics) |
|||
Line 1: | Line 1: | ||
Metagenomics is described as “the comprehensive study of nucleotide sequence, structure, regulation, and function”. Scientists can study the smallest component of an environmental system by extracting DNA from organisms in the system and inserting it into a model organism. The model organism then expresses this DNA where it can be studied using standard laboratory techniques. | Metagenomics is described as “the comprehensive study of nucleotide sequence, structure, regulation, and function”. Scientists can study the smallest component of an environmental system by extracting DNA from organisms in the system and inserting it into a model organism. The model organism then expresses this DNA where it can be studied using standard laboratory techniques. | ||
+ | |||
+ | ==Procedure of Metagenomics== | ||
+ | Metagenomics is employed as a means of systematically investigating, classifying, and manipulating the entire genetic material isolated from environmental samples. This is a multi-step process that relies on the efficiency of four main steps. The procedure consists of (i) the isolation of genetic material, (ii) manipulation of the genetic material, (iii) library construction, and the (iv) the analysis of genetic material in the metagenomic library. | ||
+ | |||
+ | The first step of the procedure is the isolation of the DNA. First, a sample is collected that represents the environment under investigation because the biological diversity will be different in different environments. The samples contain many different types of microorganism, the cells of which can be broken open using chemical methods such as alkaline conditions or physical methods such as sonication. Once the DNA from the cells is free, it must be separated from the rest of the sample. This is accomplished by taking advantage of the physical and chemical properties of DNA. Some methods of DNA isolation include density centrifugation, affinity binding, and solubility/precipitation. | ||
+ | |||
+ | Once the DNA is collected, it is manipulated so that it can be used in the model organism. Genomic DNA (the genetic material of an organism) is relatively large so it is cut up into smaller fragments using enzymes called restriction endonucleases. These are special enzymes that cut DNA at a particular sequence of base pairs. The enzymes move along the long fragments until they recognize these sequences where they cut both strands of the DNA. This results in the smaller, linear fragments of DNA depicted. The fragments are then combined with vectors. Vectors are small units of DNA that can be inserted into cells where they can replicate and produce the proteins encoded on the DNA using the machinery that the cells use to express normal genes. The vectors also contain a selectable marker. Selectable markers provide a growth advantage that the model organism would not normally have (such as resistance to a particular antibiotic) and are used to identify which organisms contain vectors and which ones do not. | ||
+ | |||
+ | The third step is to introduce the vectors with the metagenomic DNA fragments into the model organism. This allows the DNA from organisms that would not grow under laboratory conditions to be grown, expressed, and studied. The DNA inserted in the vector is transformed into cells of a model organism, typically Escherichia coli. Transformation is the physical insertion of foreign DNA into a cell, followed by stable expression of proteins. It can be done by chemical, electrical, or biological methods. The method of transformation is determined based on the type of sample used and the required efficiency of the reaction. The metagenomic DNA in the vectors are all in the same sample initially but the vectors are designed so that only one kind of DNA fragment from the sample will be maintained in each individual cell. The transformed cells are then grown on selective media so that only the cells carrying vectors will survive. Each group of cells that grows is called a colony. Each colony consists of many cloned cells that originated from one single cell. These samples of cells containing all of the metagenomic DNA samples on vectors are called metagenomic libraries. Each colony can be used to create a stock of cells for future study of a single fragment of the DNA from the environmental sample. | ||
+ | |||
+ | The fourth and final step in the procedure is the analysis of the DNA from the metagenomic libraries. The expression of DNA determines the physical and chemical properties of organisms so there are many potential methods of analysis. A phenotype is the physical attribute associated with expression of a gene. An example of metagenomic analysis would be to look for an unusual colour or shape in the model organism. An aspect of the phenotype that is not readily observed is chemical reaction. The chemical properties of the expressed metagenomic DNA can be examined by performing chemical assay on products created by the model organism. This would investigate whether the model organism gained an enzymatic function that it was previously lacking such as use of an unusual nutrient source for growth under conditions that limit normal nutrient availability. |
Revision as of 09:21, 24 October 2010
Metagenomics is described as “the comprehensive study of nucleotide sequence, structure, regulation, and function”. Scientists can study the smallest component of an environmental system by extracting DNA from organisms in the system and inserting it into a model organism. The model organism then expresses this DNA where it can be studied using standard laboratory techniques.
Procedure of Metagenomics
Metagenomics is employed as a means of systematically investigating, classifying, and manipulating the entire genetic material isolated from environmental samples. This is a multi-step process that relies on the efficiency of four main steps. The procedure consists of (i) the isolation of genetic material, (ii) manipulation of the genetic material, (iii) library construction, and the (iv) the analysis of genetic material in the metagenomic library.
The first step of the procedure is the isolation of the DNA. First, a sample is collected that represents the environment under investigation because the biological diversity will be different in different environments. The samples contain many different types of microorganism, the cells of which can be broken open using chemical methods such as alkaline conditions or physical methods such as sonication. Once the DNA from the cells is free, it must be separated from the rest of the sample. This is accomplished by taking advantage of the physical and chemical properties of DNA. Some methods of DNA isolation include density centrifugation, affinity binding, and solubility/precipitation.
Once the DNA is collected, it is manipulated so that it can be used in the model organism. Genomic DNA (the genetic material of an organism) is relatively large so it is cut up into smaller fragments using enzymes called restriction endonucleases. These are special enzymes that cut DNA at a particular sequence of base pairs. The enzymes move along the long fragments until they recognize these sequences where they cut both strands of the DNA. This results in the smaller, linear fragments of DNA depicted. The fragments are then combined with vectors. Vectors are small units of DNA that can be inserted into cells where they can replicate and produce the proteins encoded on the DNA using the machinery that the cells use to express normal genes. The vectors also contain a selectable marker. Selectable markers provide a growth advantage that the model organism would not normally have (such as resistance to a particular antibiotic) and are used to identify which organisms contain vectors and which ones do not.
The third step is to introduce the vectors with the metagenomic DNA fragments into the model organism. This allows the DNA from organisms that would not grow under laboratory conditions to be grown, expressed, and studied. The DNA inserted in the vector is transformed into cells of a model organism, typically Escherichia coli. Transformation is the physical insertion of foreign DNA into a cell, followed by stable expression of proteins. It can be done by chemical, electrical, or biological methods. The method of transformation is determined based on the type of sample used and the required efficiency of the reaction. The metagenomic DNA in the vectors are all in the same sample initially but the vectors are designed so that only one kind of DNA fragment from the sample will be maintained in each individual cell. The transformed cells are then grown on selective media so that only the cells carrying vectors will survive. Each group of cells that grows is called a colony. Each colony consists of many cloned cells that originated from one single cell. These samples of cells containing all of the metagenomic DNA samples on vectors are called metagenomic libraries. Each colony can be used to create a stock of cells for future study of a single fragment of the DNA from the environmental sample.
The fourth and final step in the procedure is the analysis of the DNA from the metagenomic libraries. The expression of DNA determines the physical and chemical properties of organisms so there are many potential methods of analysis. A phenotype is the physical attribute associated with expression of a gene. An example of metagenomic analysis would be to look for an unusual colour or shape in the model organism. An aspect of the phenotype that is not readily observed is chemical reaction. The chemical properties of the expressed metagenomic DNA can be examined by performing chemical assay on products created by the model organism. This would investigate whether the model organism gained an enzymatic function that it was previously lacking such as use of an unusual nutrient source for growth under conditions that limit normal nutrient availability.