Synthetic Biology Resources
From DrugPedia: A Wikipedia for Drug discovery
Definition of Synthetic Biology
Synthetic Biology (also known as Synbio, Synthetic Genomics, Constructive Biology, Extreme Genetic Engineering or Systems Biology) – the design and construction of new biological parts, devices and systems that do not exist in the natural world and also the redesign of existing biological systems to perform specific tasks. Advances in nanoscale technologies – manipulation of matter at the level of atoms and molecules – are contributing to advances in synthetic biology.
Basics of SynBio
At the core of synthetic biology is a belief that all the parts of life can be made synthetically (that is, by chemistry), engineered and assembled to produce working organisms. DNA code is regarded as the software that instructs life, while the cell membrane and all the biological machinery inside the cell are regarded as the hardware (or wetware as it is sometimes known) that need to be snapped together to make a living organism. DNA synthesis reduces the time it takes genetic engineers to isolate and transfer DNA in order to build genetically modified organisms.
“We’re going to build you exactly what you are looking for: Whole plasmids, whole genes, gene fragments . . . and in one to two years, possibly a whole genome.” – John Mulligan CEO of Blue Heron Biotechnology, Washington (USA)
“There is no technical barrier to synthesizing plants and animals, it will happen as soon as anyone pays for it.” — Drew Endy, MIT
Drew Endy of MIT speculates that within 20 years human genomes will be synthesised from scratch.
At present Craig Venter holds the world’s gene-speed record for synthetically producing a 5,386 bp genome (of the virus phiX 174) in under 14 days (although there were errors in his copy).
Synthetic biologists want to work below the level of the gene, at the level of the codon – to identify codons and rearrange them to build new sets of biological instructions. Because there are 64 possible codons (four bases linked together in sets of three, or 4*4*4) but only 20 different amino acids they translate into, synthetic biologists can choose among different options for codons when they want to express a specific amino acid (known as codon optimization). It may be that one codon works better in bacteria and another in plants even though both produce the same amino acid.